JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 29, No. 1, 2016 http://dx.doi.org/10.14403/jcms.2016.29.1.123

THE TRANSFORMS OF PYTHAGOREAN AND QUADRATIC MEANS OF WEIGHTED SHIFTS

SANG HOON LEE*

ABSTRACT. In this article, we introduce the transforms of Pythagorean and quadratic means of weighted shifts. We then explore how the transforms of weighted shifts behaves, in comparison with the Aluthge transform.

1. Introduction

Let \mathcal{H} be a Hilbert space and T be a bounded linear operator defined on \mathcal{H} whose polar decomposition is T = U|T|. The Aluthge transform of T is the operator $\widetilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. This transform was first studied in [1] and has received much attention in recent years. One reason the Aluthge transform is interesting is in relation to the invariant subspace problem. We recall that the Duggal transform $\widetilde{T}^D = |T|U$ of T, which is first referred in [12]. Clearly, the spectrum of \widetilde{T} (resp. \widetilde{T}^D) equals that of T. For $\alpha \equiv \{\alpha_k\}_{k=0}^{\infty}$ a bounded sequence of positive real numbers (called weights), let $W_{\alpha} \equiv shift(\alpha_0, \alpha_1, \cdots) : \ell^2(\mathbb{Z}_+) \to \ell^2(\mathbb{Z}_+)$ be the associated unilateral weighted shift, defined by $W_{\alpha}e_k := \alpha_k e_{k+1}$ (all $k \geq 0$), where $\{e_k\}_{n=0}^{\infty}$ is the canonical orthonormal basis in $\ell^2(\mathbb{Z}_+)$. For a shift W_{α} , we let \widetilde{W}_{α} be the Aluthge transform of W_{α} . Then we can see that $\widetilde{W}_{\alpha} = shift(\sqrt{\alpha_0\alpha_1}, \sqrt{\alpha_1\alpha_2}, \cdots) =: shift(\widetilde{\alpha}_0, \widetilde{\alpha}_1, \cdots)$ (called the shift of the geometric mean of a sequence). In [14] we study some properties of the mean transform $\widehat{T} := \frac{1}{2}(U|T| + |T|U) = \frac{1}{2}(U|T| + \widetilde{T}^D)$. Let \widehat{W}_{α} be the Mean transform of W_{α} . Then we that $\widehat{W}_{\alpha} =$

Received January 12, 2016; Accepted February 05, 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 47B20, 47B37, 47A13, 28A50; Secondary 44A60, 47-04, 47A20.

Key words and phrases: Aluthge transform, Pythagorean mean transform, quadratic mean transform, subnormal, k-hyponormal, weighted shifts.

The author was supported by CNU.

 $shift\left(\frac{\alpha_0+\alpha_1}{2},\frac{\alpha_1+\alpha_2}{2},\cdots\right) =: shift(\widehat{\alpha}_0,\widehat{\alpha}_1,\cdots)$ (called the shift of the arithmetic mean of a sequence). Thus, based on the arithmetic and geometric means of sequences just given above, it is natural to consider hamonic and quadratic means of sequences. For a weighted shift W_{α} , we let $\widetilde{W}^H_{\alpha} := shift\left(\frac{2\alpha_0\alpha_1}{\alpha_0+\alpha_1},\frac{2\alpha_1\alpha_2}{\alpha_1+\alpha_2},\cdots\right)$ be the hamonic mean transform of W_{α} and $\widetilde{W}^Q_{\alpha} := shift\left(\sqrt{\frac{\alpha_0^2+\alpha_1^2}{2}},\sqrt{\frac{\alpha_1^2+\alpha_2^2}{2}},\cdots\right)$ be the quadratic mean transform of W_{α} , respectively. We call the arithmetic, geometric and hamonic means Pythagorean means. In this article, we study some properties of the transforms of Pythagorean and quadratic means, and the following problems. From ([11, Theorem 2.8]), we knew that the Aluthge transform \widetilde{B}_+ of the Bergman shift $B_+ \equiv shift\left(\sqrt{\frac{1}{2}},\sqrt{\frac{2}{3}},\cdots\right)$ is subnormal. Thus, we can ask:

PROBLEM 1.1. Is the hamonic mean transform $\widetilde{B_{+}}^{H}$ of B_{+} subnormal?

PROBLEM 1.2. Is the quadratic mean transform \widetilde{B}_{+}^{Q} of B_{+} subnormal?

We can also ask:

PROBLEM 1.3. For $k \geq 1$, if W_{α} is k-hyponormal, does it follow that the transform $\widetilde{W}_{\alpha}^{H}$ (resp. $\widetilde{W}_{\alpha}^{Q}$) k-hyponormal?

PROBLEM 1.4. If W_{α} is subnormal with Berger measure μ , does it follow that $\widetilde{W}_{\alpha}^{H}$ (resp. $\widetilde{W}_{\alpha}^{Q}$) subnormal? If it does, what is the Berger measure of $\widetilde{W}_{\alpha}^{H}$ (resp. $\widetilde{W}_{\alpha}^{Q}$)?

Recall that $T \in \mathcal{B}(\mathcal{H})$ is normal if $T^*T = TT^*$, subnormal if $T = N|_{\mathcal{H}}$, where N is normal and $N(\mathcal{H}) \subseteq \mathcal{H}$, and hyponormal if $T^*T \geq TT^*$. It is called that $T \in \mathcal{B}(\mathcal{H})$ is quasinormal if T commutes with T^*T . It is well known that normal \Longrightarrow quasinormal \Longrightarrow subnormal \Longrightarrow hyponormal.

2. Main results

For a weighted shift W_{α} , it is easy to see that W_{α} is hyponormal if and only if $\alpha_0 \leq \alpha_1 \leq \cdots$. Thus, the hamonic transform \widetilde{W}_{α}^H (resp. the quadratic transform \widetilde{W}_{α}^Q) of W_{α} is hyponormal if and only

if $\frac{2\alpha_n\alpha_{n+1}}{\alpha_n+\alpha_{n+1}} \leq \frac{2\alpha_{n+1}\alpha_{n+2}}{\alpha_{n+1}+\alpha_{n+2}} \left(\text{resp. } \sqrt{\frac{\alpha_n^2+\alpha_{n+1}^2}{2}} \leq \sqrt{\frac{\alpha_{n+1}^2+\alpha_{n+2}^2}{2}} \right)$ if and only if $\alpha_n \leq \alpha_{n+2}$ (all $n \geq 0$). Hence, if W_{α} is hyponormal, then the hamonic transform \widetilde{W}_{α}^H and the quadratic transform \widetilde{W}_{α}^Q are both hyponormal. The converse is not true in general. For example, let $W_{\alpha} \equiv shift(\frac{1}{2}, 1, \frac{1}{2}, 1, \frac{1}{2}, 1, \cdots)$. Then W_{α} is clearly not hyponormal but he hamonic transform $\widetilde{W}_{\alpha}^H = \frac{2}{3}U_+$ and the quadratic transform $\widetilde{W}_{\alpha}^Q = \sqrt{\frac{5}{8}}U_+$, so both transforms are subnormal.

We recall that for $k \ge 1$, T is k-hyponormal if

$$\begin{pmatrix} I & T^* & T^{*^2} & \cdots & T^{*^k} \\ T & T^*T & T^{*^2}T & \cdots & T^{*^k}T \\ T^2 & T^*T^2 & T^{*^2}T^2 & \cdots & T^{*^k}T^2 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ T^k & T^{*^2}T^k & T^{*^2}T^k & \cdots & T^{*^k}T^k \end{pmatrix}_{(k+1)\times(k+1)} \ge 0.$$

The Bram-Halmos characterization of subnormality ([2, III.1.9]) can be paraphrased as follow: T is subnormal if and only if T is k-hyponormal for every $k \ge 1$ ([7, Proposition 1.9]). We recall that the *moments* of W_{α} are given as

(2.1)
$$\gamma_n \equiv \gamma_n(W_\alpha) := \begin{cases} 1, & \text{if } n = 0\\ \alpha_0^2 \cdot \dots \cdot \alpha_{n-1}^2, & \text{if } n > 0 \end{cases}$$

We now consider whether the mean transform \widehat{W}_{α} of W_{α} preserves the *k*-hyponormality. We show that there exists a subnormal weighted shift W_{α} such that \widehat{W}_{α} is not 2-hyponormal. For this, we need the following lemmas.

LEMMA 2.1. ([3]) Let $W_{\alpha}e_i = \alpha_i e_{i+1}$ $(i \ge 0)$ be a hyponormal weighted shift, and let $k \ge 1$. The following statements are equivalent:

- (i) W_{α} is k-hyponormal.
- (ii) The matrix

$$(([W_{\alpha}^{*j}, W_{\alpha}^{i}]e_{n+j}, e_{n+i}))_{i,j=1}^{k}$$

is positive semi-definite for all $n \ge -1$. (iii) The matrix

$$(\gamma_n\gamma_{n+i+j} - \gamma_{n+i}\gamma_{n+j})_{i,j=1}^k$$

is positive semi-definite for all $n \ge 0$, where as usual $\gamma_0 = 1$, $\gamma_n = \alpha_0^2 \cdots \alpha_{n-1}^2$ $(n \ge 1)$.

(iv) The Hankel matrix

$$H(k;n) := (\gamma_{n+i+j-2})_{i,j=1}^{k+1}$$

is positive semi-definite for all $n \ge 0$.

LEMMA 2.2. (cf.[17]) Let $M \equiv \begin{pmatrix} A & B \\ B^* & C \end{pmatrix}$ be a 2 × 2 operator matrix, where A and C are square matrices and B is a rectangular matrix. Then

$$M \ge 0 \iff$$
 there exists W such that
$$\begin{cases} A \ge 0\\ B = AW\\ C \ge W^*AW. \end{cases}$$

For matrices $A, B \in M_n(\mathbb{C})$, we let $A \circ B$ denote their Schur product, i.e., $(A \circ B)_{ij} := A_{ij}B_{ij}$ $(1 \leq i, j \leq n)$. The following result is well known: If $A \geq 0$ and $B \geq 0$, then $A \circ B \geq 0$ ([15]). For matrices $A, B \in M_n(\mathbb{C})$, we let $A \circ B$ denote their Schur product. For $\alpha \equiv$ $\{\alpha_n\}_{n=0}^{\infty}$ and $\beta \equiv \{\beta_n\}_{n=0}^{\infty}$, the Schur product of α and β is defined by $\alpha \circ \beta := \{\alpha_n \beta_n\}_{n=0}^{\infty}$. Thus, for given two 1-variable subnormal weighted shifts W_{α} and W_{β} , their Schur product $W_{\alpha} \circ W_{\beta}$, which we denote by $W_{\alpha\beta}$, is subnormal. That is, if W_{α} and W_{β} are k-hyponormal $(k \geq 1)$ 1-variable weighted shifts, then the Schur product

(2.2) $W_{\alpha\beta} \equiv W_{\alpha} \circ W_{\beta}$ is a k-hyponormal 1-variable weighted shift [8]. Let $a, b, c, d \ge 0$ satisfy ad-bc > 0. Let $S(a, b, c, d) := shift(\alpha_0, \alpha_1, \alpha_2, \cdots),$

where $\alpha_n := \sqrt{\frac{an+b}{cn+d}}$ $(n \ge 0)$. Then we have:

LEMMA 2.3. ([9]) Let $a, b, c, d \ge 0$ satisfy ad-bc > 0. Then S(a, b, c, d) is subnormal.

Recall that the Bergman shift $B_+ \equiv shift\left(\sqrt{\frac{1}{2}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}}, \cdots\right)$ is subnormal with Berger measure $\mu = ds$. We let $B_+^{\circ} := B_+ \circ B_+ \equiv shift\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots\right)$. Then by (2.2), B_+° is subnormal. From ([11, Theorem 2.8], [14]), we knew that the Aluthge transform \widetilde{B}_+ of the Bergman shift B_+ and the mean transform \widehat{B}_+° of B_+° are both subnormal. Thus, we can ask whether the harmonic transform \widetilde{B}_+^{H} (resp. the quadratic transform \widetilde{B}_+^{Q} of B_+ is subnormal. We also ask whether $\widetilde{B}_+^{\circ}^{H}$ (resp. $\widetilde{B}_+^{\circ}^{Q}$ of B_+° is subnormal. We recall the following result.

Lemma 2.4. ([14])

(i) The Aluthge transform $\widetilde{B_{+}^{\circ}}$ of B_{+}° is subnormal.

(ii) The Mean transform $\widehat{B_+^{\circ}}$ of B_+° is subnormal.

Then we have:

THEOREM 2.5. The quadratic transform $\widetilde{B_+}^Q$ of B_+ is subnormal.

Proof. We let $B_+ = shift\left(\sqrt{\frac{1}{2}}, \sqrt{\frac{2}{3}}, \cdots\right) := shift(\alpha_0, \alpha_1, \cdots)$ and $\widetilde{B_+}^Q := shift\left(\widetilde{\alpha}_0^Q, \widetilde{\alpha}_1^Q, \cdots\right)$. Then for $n \ge 0$, we have

$$\widetilde{\alpha}_{n}^{Q} = \sqrt{\frac{\alpha_{n}^{2} + \alpha_{n+1}^{2}}{2}} = \sqrt{\frac{\frac{n+1}{n+2} + \frac{n+2}{n+3}}{2}} = \left(\sqrt{\frac{\sqrt{2}n + 2\sqrt{2} - 1}{n+2}}\right) \left(\sqrt{\frac{\sqrt{2}n + 2\sqrt{2} + 1}{n+3}}\right)$$

and

 $\widetilde{B}_{+}^{Q} = S(\sqrt{2}, 2\sqrt{2} - 1, 1, 2) \circ S(\sqrt{2}, 2\sqrt{2} + 1, 1, 2).$

By Lemma 2.3, we can see that $S(\sqrt{2}, 2\sqrt{2} - 1, 1, 2)$ and $S(\sqrt{2}, 2\sqrt{2} + 1, 1, 2)$ are both subnormal. Thus, by (2.2), we have that the quadratic transform $\widetilde{B_+}^Q$ of B_+ is subnormal, as desired.

THEOREM 2.6. The harmonic transform $\widetilde{B_+^{\circ}}^H$ of B_+° is subnormal.

Proof. We let $\widetilde{B}_{+}^{H} := shift(\widetilde{\alpha}_{0}^{H}, \widetilde{\alpha}_{1}^{H}, \cdots)$. Then for $n \geq 0$, we can see that

$$\begin{aligned} \widehat{\alpha}_{n} &= \frac{2\alpha_{n}\alpha_{n+1}}{\alpha_{n} + \alpha_{n+1}} = (\alpha_{n}\alpha_{n+1}) \left(\frac{2}{\alpha_{n} + \alpha_{n+1}}\right) \\ &= \left(\frac{n+1}{n+3}\right) \left(\frac{2(n+2)(n+3)}{(n+1)(n+3) + (n+2)^{2}}\right) \\ &= \left(\frac{n+1}{n+3}\right) \left(\frac{2(n+2)^{2} + 2(n+2)}{2(n+2)^{2} - 1}\right) \\ &= \left(\frac{n+1}{n+3}\right) \left(\frac{2(n+2) + 2}{\sqrt{2}(n+2) + 1}\right) \left(\frac{n+2}{\sqrt{2}(n+2) - 1}\right) \\ &= \left(\frac{n+1}{n+3}\right) \left(\frac{2n+6}{\sqrt{2}n+2\sqrt{2} + 1}\right) \left(\frac{n+2}{\sqrt{2}n+2\sqrt{2} - 1}\right) \\ &= \left(\sqrt{\frac{n+1}{n+3}}\right) \left(\sqrt{\frac{n+1}{n+3}}\right) \left(\sqrt{\frac{2n+6}{\sqrt{2}n+2\sqrt{2} + 1}}\right) \left(\sqrt{\frac{2n+6}{\sqrt{2}n+2\sqrt{2} + 1}}\right) \\ &\times \left(\sqrt{\frac{n+2}{\sqrt{2}n+2\sqrt{2} - 1}}\right) \left(\sqrt{\frac{n+2}{\sqrt{2}n+2\sqrt{2} - 1}}\right). \end{aligned}$$

Thus, we have that

$$\widetilde{B_{+}}^{H} = S(1, 1, 1, 3) \circ S(1, 1, 1, 3) \circ S(2, 6, \sqrt{2}, 2\sqrt{2} + 1)$$
$$\circ S(2, 6, \sqrt{2}, 2\sqrt{2} + 1) \circ S(1, 2, \sqrt{2}, 2\sqrt{2} - 1) \circ S(1, 2, \sqrt{2}, 2\sqrt{2} - 1).$$

Since S(1,1,1,3), $S(2,6,\sqrt{2},2\sqrt{2}+1)$ and $S(1,2,\sqrt{2},2\sqrt{2}-1)$ are all subnormal, it follows from (2.2) that the harmonic transform $\widetilde{B_+}^{\circ H}$ of B_+° is subnormal.

Next, we study that the k-hyponormality is not invariant under those transforms for $k \ge 1$. For them, we first recall that W_x is k-hyponormal if and only if for all $k \ge 1$ and $n \ge 0$, the Hankel matrix

(2.3)
$$H(k;n)(W_x) = (\gamma_{n+i+j-2}(W_x))_{i,j=1}^{k+1} \ge 0 \text{ (Lemma 2.1)},$$

For a weighted shift $W_{\alpha} \equiv shift(\alpha_0, \alpha_1, \alpha_2, \cdots)$, we also recall that (2.4) $\widetilde{W}_{\alpha} = shift(\sqrt{\alpha_0}, \alpha_1, \alpha_2, \cdots)$, $\widehat{W}_{\alpha} = shift(\alpha_0, \alpha_1, \alpha_2, \cdots)$

$$W_{\alpha} = shift(\sqrt{\alpha_{0}\alpha_{1}}, \sqrt{\alpha_{1}\alpha_{2}}, \cdots); W_{\alpha} = shift\left(\frac{\alpha_{0}+\alpha_{1}}{2}, \frac{\alpha_{1}+\alpha_{2}}{2}, \cdots\right);$$
$$\widetilde{W}_{\alpha}^{H} := shift\left(\frac{2\alpha_{0}\alpha_{1}}{\alpha_{0}+\alpha_{1}}, \frac{2\alpha_{1}\alpha_{2}}{\alpha_{1}+\alpha_{2}}, \cdots\right); \widetilde{W}_{\alpha}^{Q} := shift\left(\sqrt{\frac{\alpha_{0}^{2}+\alpha_{1}^{2}}{2}}, \sqrt{\frac{\alpha_{1}^{2}+\alpha_{2}^{2}}{2}}, \cdots\right).$$

Next, we show that if W_{α} is subnormal with Berger measure $\mu = a\delta_p + (1-a) \delta_q$ for some p, q > 0 $(p \neq q)$, then \widetilde{W}^H_{α} (resp. \widetilde{W}^Q_{α}) is never subnormal. For this, we recall *recursively generated weighted shifts* [5], [6]. We briefly recall some key facts about these shifts, specifically the case when there are two coefficients of recursion. In [18], J. Stampfli proved that given three positive numbers $\sqrt{a} < \sqrt{b} < \sqrt{c}$, it is always possible to find a subnormal weighted shift, denoted $W_{(\sqrt{a},\sqrt{b},\sqrt{c})^{\wedge}}$, whose first three weights are \sqrt{a}, \sqrt{b} and \sqrt{c} . In this case, the coefficients of recursion (cf. [5, Example 3.12], [6, Section 3], [4, Section 1, p. 81]) are given by

(2.5)
$$\varphi_0 = -\frac{ab(c-b)}{b-a} \text{ and } \varphi_1 = \frac{b(c-a)}{b-a},$$

the atoms t_0 and t_1 are the roots of the equation

(2.6)
$$t^2 - (\varphi_0 + \varphi_1 t) = 0,$$

and the densities ρ_0 and ρ_1 uniquely solve the 2×2 system of equations

(2.7)
$$\begin{cases} \rho_0 + \rho_1 &= 1\\ \rho_0 t_0 + \rho_1 t_1 &= \alpha_0^2. \end{cases}$$

Thus, we get

(2.8)
$$\mu = \rho_0 \delta_{t_0} + \rho_1 \delta_{t_1}$$

which is the Berger measure of $W_{(\sqrt{a},\sqrt{b},\sqrt{c})^{\wedge}}$. We consider a recursively generated weighted shift $W_{\alpha} \equiv W_{(1,\sqrt{2},\sqrt{3})^{\wedge}}$. Then by (2.8), we have that the Berger measure of $W_{\alpha} \equiv W_{(1,\sqrt{2},\sqrt{3})^{\wedge}}$ is

$$\mu := \frac{1}{4} \left(\left(2 + \sqrt{2} \right) \delta_{\left(2 - \sqrt{2} \right)} + \left(2 - \sqrt{2} \right) \delta_{\left(2 + \sqrt{2} \right)} \right).$$

We let $p := \frac{2+\sqrt{2}}{4}$ and $q := \frac{2-\sqrt{2}}{4}$. Then the Aluthge transform \widetilde{W}_{α} of $W_{\alpha} \equiv W_{(1,\sqrt{2},\sqrt{3})^{\wedge}}$ is

$$\widetilde{W}_{\alpha} \equiv shift\left(\sqrt{2},\sqrt{6},\sqrt{10},\cdots\right)$$

and the mean transform \widehat{W}_{α} of $W_{(1,2,3)^{\wedge}}$ is

$$\widehat{W}_{\alpha} \equiv shift\left(\frac{1+\sqrt{2}}{2}, \frac{\sqrt{2}+\sqrt{3}}{2}, \frac{\sqrt{3}+\sqrt{\frac{10}{3}}}{2}, \cdots\right).$$

Also the harmonic transform $\widetilde{W}^{H}_{\alpha}$ of $W_{(1,2,3)^{\wedge}}$ is

$$\widetilde{W}_{\alpha}^{H} \equiv shift\left(\sqrt{\frac{8}{3+2\sqrt{2}}}, \sqrt{\frac{24}{5+2\sqrt{6}}}, \sqrt{\frac{120}{19+6\sqrt{10}}}, \cdots\right)$$

and the quadratic transform W^Q_{α} of $W_{(1,2,3)^{\wedge}}$ is

$$\widetilde{W}^Q_{\alpha} \equiv shift\left(\sqrt{\frac{3}{2}}, \sqrt{\frac{5}{2}}, \sqrt{\frac{19}{6}}, \cdots\right).$$

Note that

$$H(2;0)\left(\widetilde{W}_{\alpha}\right), \ H(2;0)\left(\widehat{W}_{\alpha}\right), \ H(2;0)\left(\widetilde{W}_{\alpha}^{H}\right), \ H(2;0)\left(\widetilde{W}_{\alpha}^{Q}\right) < 0.$$

Thus, by Lemma 2.1, \widetilde{W}_{α} , \widehat{W}_{α} , $\widetilde{W}_{\alpha}^{H}$ and $\widetilde{W}_{\alpha}^{Q}$ are all not 2-hyponormal, so that \widetilde{W}_{α} , \widehat{W}_{α} , $\widetilde{W}_{\alpha}^{H}$ and $\widetilde{W}_{\alpha}^{Q}$ are not subnormal. If we summarize these results just given above, we have:

EXAMPLE 2.7. We consider a recursively generated weighted shift $W_{\alpha} \equiv W_{(1,\sqrt{2},\sqrt{3})^{\wedge}}$. Then W_{α} is subnormal with Berger measure $\mu =$ $a\delta_p + (1-a)\,\delta_q$ for some $p := \frac{2+\sqrt{2}}{4}, q := \frac{2-\sqrt{2}}{4} > 0$ $(p \neq q)$. But \widetilde{W}_{α} , \widetilde{W}_{α}^H and \widetilde{W}_{α}^Q are never subnormal.

By Lemmas 2.1, 2.4, Theorems 2.5, 2.6, the Nested Determinants Test (or Choleski's Algorithm) and direct computations, we have more:

EXAMPLE 2.8. For $0 < x \leq \frac{3}{5}$, let $W_x \equiv shift(x, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \cdots)$. Then we have

- (i) W_x is not 2-hyponormal;
- (ii) \widetilde{W}_x is 2-hyponormal if and only if $0 < x \le \frac{5}{9} \simeq 0.5556$;
- (iii) \widehat{W}_x is 2-hyponormal if and only if

$$0 < x \le \frac{-82300568 + 1581\sqrt{9824630305}}{123450852} \simeq 0.5543;$$

(iv) \widetilde{W}_x^H is not 2-hyponormal.

EXAMPLE 2.9. For $W_{\alpha} \equiv shift(\alpha_0, \alpha_1, \alpha_2, \cdots)$, we let $\alpha_0 = \alpha_1 := \frac{1}{2}$ and consider the following relation:

$$\frac{\alpha_n + \alpha_{n+1}}{2} = \frac{n+1}{n+2} \text{ for all } n \ge 0.$$

We also let $\widehat{W}_{\alpha} := B_{+}^{\circ} \equiv shift\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots\right)$. Then we have

- (i) $W_{\alpha} \equiv shift\left(\frac{1}{2}, \frac{1}{2}, \frac{5}{6}, \frac{2}{3}, \frac{14}{15}, \frac{11}{15}, \frac{103}{105}, \cdots\right)$ is not hyponormal;
- (ii) \widetilde{W}_{α} is not 2-hyponormal;
- (iii) \widehat{W}_{α} is subnormal;
- (iv) $\widetilde{W}^{H}_{\alpha}$ is not hyponormal.

EXAMPLE 2.10. For $\frac{1}{3} < x < \frac{2}{3}$, let $W_x \equiv shift(\frac{1}{3}, x, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \cdots)$. Then we have

(i) W_x is 2-hyponormal if and only if $0 < x \le \sqrt{\frac{2511}{7456}} \simeq 0.5803;$

- (ii) \widetilde{W}_x is not 2-hyponormal;
- (iii) \widehat{W}_x is 2-hyponormal if and only if

$$0 < x \leq \frac{-82300568 + 1581\sqrt{9824630305}}{123450852} \simeq 0.6027;$$

(iv) \widetilde{W}_x^H is 2-hyponormal if and only if $0 < x \le 0.4380$.

EXAMPLE 2.11. For $0 < x \leq \frac{1}{2}$, let $W_x \equiv shift\left(\sqrt{x}, \sqrt{\frac{1}{2}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}}, \cdots\right)$. Then we have

- (i) W_x is 2-hyponormal if and only if $0 < x \le \frac{1}{3} \simeq 0.3333;$
- (ii) \widetilde{W}_x is 2-hyponormal if and only if

$$0 < x \le \frac{3\left(77723 + 19164\sqrt{5} - 9980\sqrt{6} - 10820\sqrt{30}\right)}{303601} \simeq 0.3643;$$

(iii)
$$W_x^Q$$
 is 2-hyponormal if and only if

$$0 < x \le \frac{-1883283 + 476\sqrt{55870729}}{3766566} \simeq 0.4446.$$

In ([13], [14]), we show that for a subnormal weighted shift W_{α} with finite Berger measure $a\delta_p + (1-a)\delta_q$ (0 < a < 1, p < q), the Aluthge transform \widetilde{W}_{α} (resp. mean transform \widehat{W}_{α}) of W_{α} is subnormal if and only if p = 0. Thus, it is natural to ask whether the harmonic transform $\widetilde{W}^{H}_{\alpha}$ (resp. the quadratic transform $\widetilde{W}^{Q}_{\alpha}$) of W_{α} has the same property just mentioned above. For this, we assume that W_{α} is a contractive subnormal weighted shift with Berger measure $\mu = a\delta_p + (1-a)\delta_1$ $(0 \le p < 1)$. If a = 0, then $W_{\alpha} \equiv U_{+}$ is subnormal with $\widetilde{W}_{\alpha}^{H} \equiv \widetilde{W}_{\alpha}^{Q} \equiv$ U_+ . Thus, \widetilde{W}^H_{α} and \widetilde{W}^Q_{α} are subnormal. If a = 1, then $W_{\alpha} \equiv \sqrt{p} \cdot U_+$ is subnormal with $\widetilde{W}_{\alpha}^{H} \equiv \widetilde{W}_{\alpha}^{Q} \equiv \sqrt{p} \cdot U_{+}$. Thus, $\widetilde{W}_{\alpha}^{H}$ and $\widetilde{W}_{\alpha}^{Q}$ are also subnormal. If p = 0, then $W_{\alpha} \equiv shift(\sqrt{1-a}, 1, 1, \cdots)$ is subnormal with $\widetilde{W}_{\alpha}^{H} \equiv shift\left((1-a)^{\frac{1}{4}}, 1, 1, \cdots\right) \left(\text{resp. } \widetilde{W}_{\alpha}^{Q} \equiv shift\left(\frac{2\sqrt{1-a}}{1+\sqrt{1-a}}, 1, 1, \cdots\right)\right).$ Hence, \widetilde{W}^H_{α} and \widetilde{W}^Q_{α} are subnormal. Therefore, we have that for a = 0, 1, if W_{α} is a contractive subnormal with Berger measure $\mu =$ $a\delta_0 + (1-a)\,\delta_1 \ (0 \le p < 1)$, then \widetilde{W}^H_{α} and \widetilde{W}^Q_{α} are both subnormal, as desired. For the back implication, we assume that \widetilde{W}^H_{α} (resp. \widetilde{W}^Q_{α}) is subnormal. Then by Lemma 2.1, the Hankel matrix

$$H(k;n)\left(\widetilde{W}_{\alpha}^{H}\right) = \left(\gamma_{n+i+j-2}\left(\widetilde{W}_{\alpha}^{H}\right)\right)_{i,j=1}^{k+1} \ge 0 \text{ for all } k \ge 1 \text{ and } n \ge 0.$$

Note that

Note that

$$\gamma_i (W_\alpha) = a p^i + 1 - a \text{ for } i \ge 1$$

$$\gamma_{i}\left(\widetilde{W}_{\alpha}^{H}\right) = \frac{2^{i}\left(\sqrt{ap^{2}+1-a}\right)\left(\sqrt{\frac{ap^{3}+1-a}{ap+1-a}}\right)\cdots}{\left(\sqrt{ap+1-a}+\sqrt{\frac{ap^{2}+1-a}{ap+1-a}}\right)^{2}\left(\sqrt{\frac{ap^{2}+1-a}{ap+1-a}}+\sqrt{\frac{ap^{3}+1-a}{ap^{2}+1-a}}\right)^{2}\cdots} \\ \times \frac{\left(\sqrt{\frac{(ap^{(i+1)}+1-a)}{ap^{(i-1)}+1-a}}\right)}{\left(\sqrt{\frac{ap^{i}+1-a}{ap^{(i-1)}+1-a}}+\sqrt{\frac{ap^{(i+1)}+1-a}{ap^{i}+1-a}}\right)^{2}} \cdot \cdot \cdot \\ \text{and}$$
(2.10)

a

$$\gamma_i\left(\widetilde{W}_{\alpha}^Q\right) = \frac{\left(ap+1-a+\frac{ap^2+1-a}{ap+1-a}\right)\left(\frac{ap^2+1-a}{ap+1-a}+\frac{ap^3+1-a}{ap^2+1-a}\right)\cdots\left(\frac{ap^i+1-a}{ap^{(i-1)}+1-a}+\frac{ap^{(i+1)}+1-a}{ap^{i}+1-a}\right)}{2^i}$$

Case 1: If p = 0 or a = 0, 1, then it is clear. **Case 2:** For 0 , we note that

$$\begin{aligned} H(3;1)\left(\widetilde{W}_{\alpha}^{\#}\right) &\geq 0 \\ \Leftrightarrow & \left(\begin{array}{c} \gamma_{1}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{2}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{3}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{4}\left(\widetilde{W}_{\alpha}^{\#}\right) \\ \gamma_{2}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{3}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{4}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{5}\left(\widetilde{W}_{\alpha}^{\#}\right) \\ \gamma_{3}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{4}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{5}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{6}\left(\widetilde{W}_{\alpha}^{\#}\right) \\ \gamma_{4}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{5}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{6}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{7}\left(\widetilde{W}_{\alpha}^{\#}\right) \end{array}\right) \\ & := \left(\begin{array}{c} D\left(\widetilde{W}_{\alpha}^{\#}\right) & E\left(\widetilde{W}_{\alpha}^{\#}\right) \\ \left(E\left(\widetilde{W}_{\alpha}^{\#}\right)\right)^{*} & F\left(\widetilde{W}_{\alpha}^{\#}\right) \end{array}\right) =: P\left(H(3;1)\left(\widetilde{W}_{\alpha}^{\#}\right)\right) \geq 0, \end{aligned}$$

where

$$D\left(\widetilde{W}_{\alpha}^{\#}\right) := \begin{pmatrix} \gamma_{1}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{2}\left(\widetilde{W}_{\alpha}^{\#}\right) \\ \gamma_{2}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{3}\left(\widetilde{W}_{\alpha}^{\#}\right) \end{pmatrix},$$

$$E\left(\widetilde{W}_{\alpha}^{\#}\right) := \begin{pmatrix} \gamma_{3}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{4}\left(\widetilde{W}_{\alpha}^{\#}\right) \\ \gamma_{4}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{5}\left(\widetilde{W}_{\alpha}^{\#}\right) \end{pmatrix},$$

$$F\left(\widetilde{W}_{\alpha}^{H}\right) := \begin{pmatrix} \gamma_{5}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{6}\left(\widetilde{W}_{\alpha}^{\#}\right) \\ \gamma_{6}\left(\widetilde{W}_{\alpha}^{\#}\right) & \gamma_{7}\left(\widetilde{W}_{\alpha}^{\#}\right) \end{pmatrix} \text{ and } \widetilde{W}_{\alpha}^{\#} := \widetilde{W}_{\alpha}^{H} \text{ or } \widetilde{W}_{\alpha}^{Q}.$$

We now apply Lemma 2.2 to $P\left(H(3;1)\left(\widetilde{W}_{\alpha}^{\#}\right)\right)$. A direct calculation shows that $F\left(\widetilde{W}_{\alpha}^{\#}\right)$ is invertible on $\{(a,p):(a,p)\in(0,1)\times(0,1)\}$. Hence, we have

$$P\left(H(3;1)\left(\widetilde{W}_{\alpha}^{\#}\right)\right) \ge 0$$

$$\iff D\left(\widetilde{W}_{\alpha}^{\#}\right) - \left(W\left(\widetilde{W}_{\alpha}^{\#}\right)\right)^{*} F\left(\widetilde{W}_{\alpha}^{\#}\right) W\left(\widetilde{W}_{\alpha}^{\#}\right) \ge 0,$$

where $W\left(\widetilde{W}_{\alpha}^{\#}\right) := F\left(\widetilde{W}_{\alpha}^{\#}\right)^{-1} \left(E\left(\widetilde{W}_{\alpha}^{\#}\right)\right)^{*}$. A direct calculation shows that

$$D\left(\widetilde{W}_{\alpha}^{\#}\right) - \left(W\left(\widetilde{W}_{\alpha}^{\#}\right)\right)^{*} F\left(\widetilde{W}_{\alpha}^{\#}\right) W\left(\widetilde{W}_{\alpha}^{\#}\right) \ge 0$$
$$\iff Q\left(\widetilde{W}_{\alpha}^{\#}\right) := \begin{pmatrix} q_{11}\left(\widetilde{W}_{\alpha}^{\#}\right) & q_{12}\left(\widetilde{W}_{\alpha}^{\#}\right) \\ q_{21}\left(\widetilde{W}_{\alpha}^{\#}\right) & q_{22}\left(\widetilde{W}_{\alpha}^{\#}\right) \end{pmatrix} \ge 0.$$

Note that
$$Q\left(\widetilde{W}_{\alpha}^{\#}\right) \geq 0$$
 if and only if $q_{11}\left(\widetilde{W}_{\alpha}^{\#}\right) \geq 0$, $q_{11}\left(\widetilde{W}_{\alpha}^{\#}\right) \geq 0$ and $\det Q\left(\widetilde{W}_{\alpha}^{\#}\right) \geq 0$

Using the software tool *Mathematica* [19], we can observe that

$$\det Q\left(\widetilde{W}^{\#}_{\alpha}\right) < 0 \text{ when } (a,p) \in (0,1) \times (0,1).$$

Thus $\widetilde{W}^{\#}_{\alpha}$ is not 3-hyponormal, that is, $\widetilde{W}^{\#}_{\alpha}$ is not subnormal when $(a, p) \in (0, 1) \times (0, 1)$. Therefore, $\widetilde{W}^{\#}_{\alpha}$ is not subnormal when 0 , which is contradict to the assumption. Therefore, by**Case 1**and**Case 2** $, the mean transform <math>\widetilde{W}^{\#}_{\alpha}$ is subnormal only if p = 0.

If we summarize these results just given above, we have:

THEOREM 2.12. Let W_{α} be a contractive subnormal weighted shift with Berger measure $\mu = a\delta_p + (1-a)\delta_1$ $(0 \le p < 1)$. Then we have that

- (i) the harmonic transform $\widetilde{W}_{\alpha}^{H}$ of W_{α} is subnormal if and only if p = 0 or a = 0, 1.
- (ii) the quadratic transform $\widetilde{W}_{\alpha}^{Q}$ of W_{α} is subnormal if and only if p = 0 or a = 0, 1.

COROLLARY 2.13. Let $W_{\alpha} \equiv shift(\alpha_0, \alpha_1, \cdots)$ be a subnormal with Berger measure

$$\mu = a\delta_p + (1 - a)\,\delta_q \ (0 < a < 1, \, p < q)\,.$$

- (i) the harmonic transform $\widetilde{W}^{H}_{\alpha}$ of W_{α} is subnormal if and only if p = 0.
- (ii) the quadratic transform \widetilde{W}^Q_{α} of W_{α} is subnormal if and only if p = 0.

Proof. (\Leftarrow) Suppose that p = 0. Then a direct calculation shows that W_{α} is

$$shift\left(\sqrt{(1-a)\,q},\sqrt{q},\sqrt{q},\cdots\right),$$

so that we have

$$\widetilde{W}_{\alpha}^{H} \equiv shift\left(\frac{2\sqrt{(1-a)\,q}}{1+\sqrt{(1-a)}},\sqrt{q},\sqrt{q},\cdots\right)$$

and

$$\widetilde{W}^Q_{\alpha} \equiv shift\left(\sqrt{\frac{(2-a)\,q}{2}}, \sqrt{q}, \sqrt{q}, \cdots\right).$$

Thus, $\widetilde{W}^{H}_{\alpha}$ and $\widetilde{W}^{H}_{\alpha}$ are subnormal with Berger measures

(2.11)
$$\left(1 - \left(\frac{2\sqrt{(1-a)}}{1+\sqrt{(1-a)}}\right)^2\right)\delta_0 + \left(\frac{2\sqrt{(1-a)}}{1+\sqrt{(1-a)}}\right)^2\delta_q \text{ and} \\ \left(1 - \frac{(2-a)}{2}\right)\delta_0 + \left(\frac{(2-a)}{2}\right)\delta_q, \text{ respectively.}$$

 $(\Longrightarrow) \text{ We note that if } W_{\alpha} \text{ is a subnormal with } a\delta_{q} + (1-a) \delta_{q}, \text{ then } \begin{pmatrix} \frac{1}{\sqrt{q}} \end{pmatrix} W_{\alpha} \text{ is a subnormal with Berger measure } a\delta_{\frac{p}{q}} + (1-a) \delta_{1}. \text{ Suppose } \text{ that } \widetilde{W}_{\alpha}^{H} \left(\text{resp. } \widetilde{W}_{\alpha}^{Q} \right) \text{ is subnormal. Then } \left(\frac{1}{\sqrt{q}} \right) \widetilde{W}_{\alpha}^{H} \left(\text{resp. } \left(\frac{1}{\sqrt{q}} \right) \widetilde{W}_{\alpha}^{Q} \right) \text{ is also subnormal. Note that } \left(\frac{1}{\sqrt{q}} \right) \widetilde{W}_{\alpha}^{H} \left(\text{resp. } \left(\frac{1}{\sqrt{q}} \right) \widetilde{W}_{\alpha}^{Q} \right) \text{ is the harmonic transform (resp. quadratic transform) of } \left(\frac{1}{\sqrt{q}} \right) W_{\alpha}. \text{ Thus, by Theorem 2.12, we have } p = 0, \text{ as desired.}$

REMARK 2.14. By Example 2.7, Theorem 2.12 and Corollary 2.13, it is nature to conjecture: Let W_{α} be a subnormal with finite atomic Berger measure μ . Then the harmonic transform $\widetilde{W}_{\alpha}^{H}$ (resp. the quadratic transform $\widetilde{W}_{\alpha}^{Q}$) of W_{α} is subnormal if and only if $\mu = a\delta_0 + (1-a)\delta_p$ (0 < a < 1).

References

- A. Aluthge, On p-hyponormal Operators for 0 Operator Theory, 13 (1990), 307-315.
- [2] J. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs, vol. 36, Amer. Math. Soc., Providence, 1991.
- [3] R.E. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory, 13 (1990), 49-66.
- [4] R. Curto, An operator-theoretic approach to truncated moment problems, in *Linear Operators*, Banach Center Publ. 38, 1997, 75-104.
- [5] R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, *Integral Equations Operator Theory* 17 (1993), 202-246.
- [6] R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, II, *Integral Equations Operator Theory* 18 (1994), 369-426.
- [7] R. Curto, P. Muhly and J. Xia, Hyponormal pairs of commuting operators, Operator Theory: Adv. Appl. 35 (1988), 1-22.
- [8] R. Curto, S. Park, k-hyponormality of powers of weighted shifts, Proc. Amer. Math. Soc. 131 (2002), 2762-2769.
- [9] R. Curto, Y. Poon and J. Yoon, Subnormality of Bergman-like weighted shifts, J. Math. Anal. Appl. 308 (2005), 334-342.

- [10] R. Curto, J. Yoon, Jointly hyponormal pairs of subnormal operators need not be jointly subnormal, Trans. Amer. Math. Soc. 358 (2006), 5139-5159.
- [11] G. R. Exner, Aluthge transforms and \$n\$n-contractivity of weighted shifts. J. Operator Theory 61 (2009), no. 2, 419–438.
- [12] C. Foias, I. Jung, E. Ko and C. Pearcy, Complete contractivity of maps associated with the Aluthge and Duggal transformations, *Pacific J. Math.* 209 (2003), 249-359.
- [13] S. H. Lee, W. Y. Lee and J. Yoon, Subnormality of Aluthge transform of weighted shifts, *Integral Equations Operator Theory* 72 (2012), 241-251.
- [14] S. H. Lee, W. Y. Lee and J. Yoon, The mean transform of bounded linear operators, J. Math. Anal. Appl. 410 (2014), 70-81.
- [15] V. Paulsen, Completely bounded maps and dilations, *Pitmam Research Notes in Mathematics Series*, vol. 146, Longman Sci. Tech., New York, 1986.
- [16] A.L. Shields, Weighted shift operators and analytic function theory, Math. Surveys 13 (1974), 49-128.
- [17] Ju. L. Smul'jan, An operator Hellinger integral, Mat. Sb. (N.S.) 49 (1959), 381-430 (in Russian).
- [18] J. Stampfli, Which weighted shifts are subnormal?, Pacific J. Math. 17 (1966), 367-379.
- [19] Wolfram Research, Inc. Mathematica, Version 4.2, Wolfram Research Inc., Champaign, IL, 2002.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: slee@cnu.ac.kr