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THE TRANSFORMS OF PYTHAGOREAN AND

QUADRATIC MEANS OF WEIGHTED SHIFTS

Sang Hoon Lee*

Abstract. In this article, we introduce the transforms of Pythagorean
and quadratic means of weighted shifts. We then explore how
the transforms of weighted shifts behaves, in comparison with the
Aluthge transform.

1. Introduction

Let H be a Hilbert space and T be a bounded linear operator defined
on H whose polar decomposition is T = U |T |. The Aluthge transform

of T is the operator T̃ = |T |
1
2U |T |

1
2 . This transform was first studied

in [1] and has received much attention in recent years. One reason the
Aluthge transform is interesting is in relation to the invariant subspace

problem. We recall that the Duggal transform T̃D = |T |U of T , which

is first referred in [12]. Clearly, the spectrum of T̃
(
resp. T̃D

)
equals

that of T . For α ≡ {αk}∞k=0 a bounded sequence of positive real num-
bers (called weights), let Wα ≡ shift(α0, α1, · · · ) : ℓ2(Z+) → ℓ2(Z+) be
the associated unilateral weighted shift, defined by Wαek := αkek+1 (all
k ≥ 0), where {ek}∞n=0 is the canonical orthonormal basis in ℓ2(Z+). For

a shift Wα, we let W̃α be the Aluthge transform of Wα. Then we can see

that W̃α = shift(
√
α0α1,

√
α1α2, · · · ) =: shift(α̃0, α̃1, · · · ) (called the

shift of the geometric mean of a sequence). In [14] we study some prop-

erties of the mean transform T̂ := 1
2 (U |T |+ |T |U) = 1

2

(
U |T |+ T̃D

)
.

Let Ŵα be the Mean transform of Wα. Then we have that Ŵα =
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shift
(
α0+α1

2 , α1+α2
2 , · · ·

)
=: shift(α̂0, α̂1, · · · ) (called the shift of the

arithmetic mean of a sequence). Thus, based on the arithmetic and
geometric means of sequences just given above, it is natural to consider
hamonic and quadratic means of sequences. For a weighted shift Wα,

we let W̃H
α := shift

(
2α0α1
α0+α1

, 2α1α2
α1+α2

, · · ·
)

be the hamonic mean trans-

form of Wα and W̃Q
α := shift

(√
α2
0+α2

1
2 ,

√
α2
1+α2

2
2 , · · ·

)
be the quadratic

mean transform of Wα, respectively. We call the arithmetic, geometric
and hamonic means Pythagorean means. In this article, we study some
properties of the transforms of Pythagorean and quadratic means, and
the following problems. From ([11, Theorem 2.8]), we knew that the

Aluthge transform B̃+ of the Bergman shift B+ ≡ shift
(√

1
2 ,
√

2
3 , · · ·

)
is subnormal. Thus, we can ask:

Problem 1.1. Is the hamonic mean transform B̃+
H

of B+ subnor-
mal?

Problem 1.2. Is the quadratic mean transform B̃+
Q

of B+ subnor-
mal?

We can also ask:

Problem 1.3. For k ≥ 1, if Wα is k-hyponormal, does it follow that

the transform W̃H
α

(
resp. W̃Q

α

)
k-hyponormal?

Problem 1.4. If Wα is subnormal with Berger measure µ, does it

follow that W̃H
α

(
resp. W̃Q

α

)
subnormal? If it does, what is the Berger

measure of W̃H
α

(
resp. W̃Q

α

)
?

Recall that T ∈ B(H) is normal if T ∗T = TT ∗, subnormal if T =
N |H, where N is normal and N(H) ⊆ H, and hyponormal if T ∗T ≥
TT ∗. It is called that T ∈ B(H) is quasinormal if T commutes with
T ∗T . It is well known that normal =⇒ quasinormal =⇒ subnormal =⇒
hyponormal.

2. Main results

For a weighted shift Wα, it is easy to see that Wα is hyponormal

if and only if α0 ≤ α1 ≤ · · · . Thus, the hamonic transform W̃H
α(

resp. the quadratic transform W̃Q
α

)
of Wα is hyponormal if and only
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if 2αnαn+1

αn+αn+1
≤ 2αn+1αn+2

αn+1+αn+2

(
resp.

√
α2
n+α2

n+1

2 ≤
√

α2
n+1+α2

n+2

2

)
if and only

if αn ≤ αn+2 (all n ≥ 0). Hence, if Wα is hyponormal, then the ha-

monic transform W̃H
α and the quadratic transform W̃Q

α are both hy-
ponormal. The converse is not true in general. For example, let
Wα ≡ shift

(
1
2 , 1,

1
2 , 1,

1
2 , 1, · · ·

)
. Then Wα is clearly not hyponormal

but he hamonic transform W̃H
α = 2

3U+ and the quadratic transform

W̃Q
α =

√
5
8U+, so both transforms are subnormal.

We recall that for k ≥ 1, T is k-hyponormal if
I T ∗ T ∗2 · · · T ∗k

T T ∗T T ∗2T · · · T ∗kT

T 2 T ∗T 2 T ∗2T 2 · · · T ∗kT 2

...
...

... · · ·
...

T k T ∗2T k T ∗2T k · · · T ∗kT k


(k+1)×(k+1)

≥ 0.

The Bram-Halmos characterization of subnormality ([2, III.1.9]) can be
paraphrased as follow: T is subnormal if and only if T is k-hyponormal
for every k ≥ 1 ([7, Proposition 1.9]). We recall that the moments of
Wα are given as

(2.1) γn ≡ γn(Wα) :=

{
1, if n = 0

α2
0 · ... · α2

n−1, if n > 0
.

We now consider whether the mean transform Ŵα of Wα preserves the
k-hyponormality. We show that there exists a subnormal weighted shift

Wα such that Ŵα is not 2-hyponormal. For this, we need the follwing
lemmas.

Lemma 2.1. ([3]) Let Wαei = αiei+1 (i ≥ 0) be a hyponormal
weighted shift, and let k ≥ 1. The following statements are equivalent:

(i) Wα is k-hyponormal.
(ii) The matrix

(([W ∗j
α ,W i

α]en+j , en+i))
k
i,j=1

is positive semi-definite for all n ≥ −1.
(iii) The matrix

(γnγn+i+j − γn+iγn+j)
k
i,j=1

is positive semi-definite for all n ≥ 0, where as usual γ0 = 1,
γn = α2

0 · · ·α2
n−1 (n ≥ 1).



126 Sang Hoon Lee

(iv) The Hankel matrix

H(k;n) := (γn+i+j−2)
k+1
i,j=1

is positive semi-definite for all n ≥ 0.

Lemma 2.2. (cf.[17]) Let M ≡
(

A B
B∗ C

)
be a 2× 2 operator ma-

trix, where A and C are square matrices and B is a rectangular matrix.
Then

M ≥ 0 ⇐⇒ there exists W such that

 A ≥ 0
B = AW
C ≥ W ∗AW.

For matrices A,B ∈ Mn(C), we let A ◦B denote their Schur product,
i.e., (A ◦ B)ij := AijBij (1 ≤ i, j ≤ n). The following result is well
known: If A ≥ 0 and B ≥ 0, then A ◦ B ≥ 0 ([15]). For matrices
A,B ∈ Mn(C), we let A ◦ B denote their Schur product. For α ≡
{αn}∞n=0 and β ≡ {βn}∞n=0, the Schur product of α and β is defined by
α◦β := {αnβn}∞n=0. Thus, for given two 1-variable subnormal weighted
shifts Wα and Wβ, their Schur product Wα ◦ Wβ, which we denote by
Wαβ , is subnormal. That is, if Wα and Wβ are k-hyponormal (k ≥ 1)
1-variable weighted shifts, then the Schur product

(2.2) Wαβ ≡ Wα ◦Wβ is a k-hyponormal 1-variable weighted shift [8].

Let a, b, c, d ≥ 0 satisfy ad−bc > 0. Let S(a, b, c, d) := shift(α0, α1, α2, · · · ),
where αn :=

√
an+b
cn+d (n ≥ 0). Then we have:

Lemma 2.3. ([9]) Let a, b, c, d ≥ 0 satisfy ad−bc > 0. Then S(a, b, c, d)
is subnormal.

Recall that the Bergman shift B+ ≡ shift
(√

1
2 ,
√

2
3 ,
√

3
4 , · · ·

)
is

subnormal with Berger measure µ = ds. We let B◦
+ := B+ ◦ B+ ≡

shift
(
1
2 ,

2
3 ,

3
4 , · · ·

)
. Then by (2.2), B◦

+ is subnormal. From ([11, Theo-

rem 2.8], [14]), we knew that the Aluthge transform B̃+ of the Bergman

shift B+ and the mean transform B̂◦
+ of B◦

+ are both subnormal. Thus,

we can ask whether the harmonic transform B̃+
H

(resp. the quadratic

transform B̃+
Q

of B+ is subnormal. We also ask whether B̃◦
+

H
(resp.

B̃◦
+

Q
of B◦

+ is subnormal. We recall the following result.

Lemma 2.4. ([14])

(i) The Aluthge transform B̃◦
+ of B◦

+ is subnormal.
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(ii) The Mean transform B̂◦
+ of B◦

+ is subnormal.

Then we have:

Theorem 2.5. The quadratic transform B̃+
Q
of B+ is subnormal.

Proof. We let B+ = shift
(√

1
2 ,
√

2
3 , · · ·

)
:= shift(α0, α1, · · · ) and

B̃+
Q
:= shift

(
α̃Q
0 , α̃

Q
1 , · · ·

)
. Then for n ≥ 0, we have

α̃Q
n =

√
α2
n+α2

n+1

2 =

√
n+1
n+2

+n+2
n+3

2 =

(√√
2n+2

√
2−1

n+2

)(√√
2n+2

√
2+1

n+3

)
and

B̃+
Q
= S(

√
2, 2

√
2− 1, 1, 2) ◦ S(

√
2, 2

√
2 + 1, 1, 2).

By Lemma 2.3, we can see that S(
√
2, 2

√
2 − 1, 1, 2) and S(

√
2, 2

√
2 +

1, 1, 2) are both subnormal. Thus, by (2.2), we have that the quadratic

transform B̃+
Q
of B+ is subnormal, as desired.

Theorem 2.6. The harmonic transform B̃◦
+

H
of B◦

+ is subnormal.

Proof. We let B̃+
H

:= shift
(
α̃H
0 , α̃H

1 , · · ·
)
. Then for n ≥ 0, we can

see that

α̂n =
2αnαn+1

αn + αn+1
= (αnαn+1)

(
2

αn + αn+1

)
=

(
n+ 1

n+ 3

)(
2 (n+ 2) (n+ 3)

(n+ 1) (n+ 3) + (n+ 2)
2

)

=

(
n+ 1

n+ 3

)(
2 (n+ 2)

2
+ 2 (n+ 2)

2 (n+ 2)
2 − 1

)

=

(
n+ 1

n+ 3

)(
2 (n+ 2) + 2√
2 (n+ 2) + 1

)(
n+ 2√

2 (n+ 2)− 1

)
=

(
n+ 1

n+ 3

)(
2n+ 6√

2n+ 2
√
2 + 1

)(
n+ 2√

2n+ 2
√
2− 1

)
=

(√
n+ 1

n+ 3

)(√
n+ 1

n+ 3

)(√
2n+ 6√

2n+ 2
√
2 + 1

)(√
2n+ 6√

2n+ 2
√
2 + 1

)

×

(√
n+ 2√

2n+ 2
√
2− 1

)(√
n+ 2√

2n+ 2
√
2− 1

)
.
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Thus, we have that

B̃+

H
= S(1, 1, 1, 3) ◦ S(1, 1, 1, 3) ◦ S(2, 6,

√
2, 2

√
2 + 1)

◦S(2, 6,
√
2, 2

√
2 + 1) ◦ S(1, 2,

√
2, 2

√
2− 1) ◦ S(1, 2,

√
2, 2

√
2− 1).

Since S(1, 1, 1, 3), S(2, 6,
√
2, 2

√
2 + 1) and S(1, 2,

√
2, 2

√
2 − 1) are all

subnormal, it follows from (2.2) that the harmonic transform B̃◦
+

H
of

B◦
+ is subnormal.

Next, we study that the k-hyponormality is not invariant under those
transforms for k ≥ 1. For them, we first recall that Wx is k-hyponormal
if and only if for all k ≥ 1 and n ≥ 0, the Hankel matrix

(2.3) H(k;n) (Wx) = (γn+i+j−2 (Wx))
k+1
i,j=1 ≥ 0 (Lemma 2.1),

For a weighted shift Wα ≡ shift(α0, α1, α2, · · · ), we also recall that
(2.4)

W̃α = shift(
√
α0α1,

√
α1α2, · · · ); Ŵα = shift

(
α0+α1

2 , α1+α2

2 , · · ·
)
;

W̃H
α := shift

(
2α0α1

α0+α1
, 2α1α2

α1+α2
, · · ·

)
; W̃Q

α := shift

(√
α2

0+α2
1

2 ,

√
α2

1+α2
2

2 , · · ·
)
.

Next, we show that if Wα is subnormal with Berger measure µ =

aδp+(1− a) δq for some p, q > 0 (p ̸= q) , then W̃H
α

(
resp. W̃Q

α

)
is never

subnormal. For this, we recall recursively generated weighted shifts [5],
[6]. We briefly recall some key facts about these shifts, specifically the
case when there are two coefficients of recursion. In [18], J. Stampfli

proved that given three positive numbers
√
a <

√
b <

√
c, it is always

possible to find a subnormal weighted shift, denotedW(
√
a,
√
b,
√
c)∧ , whose

first three weights are
√
a,
√
b and

√
c. In this case, the coefficients of

recursion (cf. [5, Example 3.12], [6, Section 3], [4, Section 1, p. 81]) are
given by

(2.5) φ0 = −ab(c− b)

b− a
and φ1 =

b(c− a)

b− a
,

the atoms t0 and t1 are the roots of the equation

(2.6) t2 − (φ0 + φ1t) = 0,

and the densities ρ0 and ρ1 uniquely solve the 2× 2 system of equations

(2.7)

{
ρ0 + ρ1 = 1

ρ0t0 + ρ1t1 = α2
0.
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Thus, we get

(2.8) µ = ρ0δt0 + ρ1δt1

which is the Berger measure of W(
√
a,
√
b,
√
c)∧ . We consider a recursively

generated weighted shift Wα ≡ W(1,
√
2,
√
3)

∧ . Then by (2.8), we have

that the Berger measure of Wα ≡ W(1,
√
2,
√
3)

∧ is

µ :=
1

4

((
2 +

√
2
)
δ(2−

√
2) +

(
2−

√
2
)
δ(2+

√
2)

)
.

We let p := 2+
√
2

4 and q := 2−
√
2

4 . Then the Aluthge transform W̃α of
Wα ≡ W(1,

√
2,
√
3)

∧ is

W̃α ≡ shift
(√

2,
√
6,
√
10, · · ·

)
and the mean transform Ŵα of W(1,2,3)∧ is

Ŵα ≡ shift

1 +
√
2

2
,

√
2 +

√
3

2
,

√
3 +

√
10
3

2
, · · ·

 .

Also the harmonic transform W̃H
α of W(1,2,3)∧ is

W̃H
α ≡ shift

(√
8

3 + 2
√
2
,

√
24

5 + 2
√
6
,

√
120

19 + 6
√
10

, · · ·

)
and the quadratic transform W̃Q

α of W(1,2,3)∧ is

W̃Q
α ≡ shift

(√
3

2
,

√
5

2
,

√
19

6
, · · ·

)
.

Note that

H(2; 0)
(
W̃α

)
, H(2; 0)

(
Ŵα

)
, H(2; 0)

(
W̃H

α

)
, H(2; 0)

(
W̃Q

α

)
< 0.

Thus, by Lemma 2.1,W̃α, Ŵα, W̃
H
α and W̃Q

α are all not 2-hyponormal,

so that W̃α, Ŵα, W̃
H
α and W̃Q

α are not subnormal.
If we summarize these results just given above, we have:

Example 2.7. We consider a recursively generated weighted shift
Wα ≡ W(1,

√
2,
√
3)

∧ . Then Wα is subnormal with Berger measure µ =

aδp + (1− a) δq for some p := 2+
√
2

4 , q := 2−
√
2

4 > 0 (p ̸= q). But W̃α,

Ŵα, W̃
H
α and W̃Q

α are never subnormal.
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By Lemmas 2.1, 2.4, Theorems 2.5, 2.6, the Nested Determinants
Test (or Choleski’s Algorithm) and direct computations, we have more:

Example 2.8. For 0 < x ≤ 3
5 , let Wx ≡ shift

(
x, 35 ,

2
3 ,

3
4 ,

4
5 , · · ·

)
.

Then we have

(i) Wx is not 2-hyponormal;

(ii) W̃x is 2-hyponormal if and only if 0 < x ≤ 5
9 ≃ 0.5556;

(iii) Ŵx is 2-hyponormal if and only if

0 < x ≤ −82300568+1581
√
9824630305

123450852 ≃ 0.5543;

(iv) W̃H
x is not 2-hyponormal.

Example 2.9. For Wα ≡ shift (α0, α1, α2, · · · ), we let α0 = α1 := 1
2

and consider the following relation:

αn + αn+1

2
=

n+ 1

n+ 2
for all n ≥ 0.

We also let Ŵα := B◦
+ ≡ shift

(
1
2 ,

2
3 ,

3
4 , · · ·

)
. Then we have

(i) Wα ≡ shift
(
1
2 ,

1
2 ,

5
6 ,

2
3 ,

14
15 ,

11
15 ,

103
105 , · · ·

)
is not hyponormal;

(ii) W̃α is not 2-hyponormal;

(iii) Ŵα is subnormal;

(iv) W̃H
α is not hyponormal.

Example 2.10. For 1
3 < x < 2

3 , let Wx ≡ shift
(
1
3 , x,

2
3 ,

3
4 ,

4
5 , · · ·

)
.

Then we have

(i) Wx is 2-hyponormal if and only if 0 < x ≤
√

2511
7456 ≃ 0.5803;

(ii) W̃x is not 2-hyponormal;

(iii) Ŵx is 2-hyponormal if and only if

0 < x ≤ −82300568+1581
√
9824630305

123450852 ≃ 0.6027;

(iv) W̃H
x is 2-hyponormal if and only if 0 < x ≤ 0.4380.

Example 2.11. For 0 < x ≤ 1
2 , letWx ≡ shift

(√
x,
√

1
2 ,
√

2
3 ,
√

3
4 , · · ·

)
.

Then we have

(i) Wx is 2-hyponormal if and only if 0 < x ≤ 1
3 ≃ 0.3333;

(ii) W̃x is 2-hyponormal if and only if

0 < x ≤ 3(77723+19164
√
5−9980

√
6−10820

√
30)

303601 ≃ 0.3643;
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(iii) W̃Q
x is 2-hyponormal if and only if

0 < x ≤ −1883283+476
√
55870729

3766566 ≃ 0.4446.

In ([13], [14]), we show that for a subnormal weighted shift Wα with
finite Berger measure aδp + (1− a) δq (0 < a < 1, p < q), the Aluthge

transform W̃α

(
resp. mean transform Ŵα

)
of Wα is subnormal if and

only if p = 0. Thus, it is natural to ask whether the harmonic transform

W̃H
α

(
resp. the quadratic transform W̃Q

α

)
of Wα has the same property

just mentioned above. For this, we assume that Wα is a contractive
subnormal weighted shift with Berger measure µ = aδp + (1− a) δ1
(0 ≤ p < 1). If a = 0, then Wα ≡ U+ is subnormal with W̃H

α ≡ W̃Q
α ≡

U+. Thus, W̃H
α and W̃Q

α are subnormal. If a = 1, then Wα ≡ √
p ·U+ is

subnormal with W̃H
α ≡ W̃Q

α ≡ √
p·U+. Thus, W̃H

α and W̃Q
α are also sub-

normal. If p = 0, then Wα ≡ shift
(√

1− a, 1, 1, · · ·
)
is subnormal with

W̃H
α ≡ shift

(
(1− a)

1
4 , 1, 1, · · ·

) (
resp. W̃Q

α ≡ shift
(

2
√
1−a

1+
√
1−a

, 1, 1, · · ·
))

.

Hence, W̃H
α and W̃Q

α are subnormal. Therefore, we have that for
a = 0, 1, if Wα is a contractive subnormal with Berger measure µ =

aδ0 + (1− a) δ1 (0 ≤ p < 1), then W̃H
α and W̃Q

α are both subnormal, as

desired. For the back implication, we assume that W̃H
α

(
resp. W̃Q

α

)
is

subnormal. Then by Lemma 2.1, the Hankel matrix

H(k;n)
(
W̃H

α

)
=
(
γn+i+j−2

(
W̃H

α

))k+1

i,j=1
≥ 0 for all k ≥ 1 and n ≥ 0.

Note that
γi (Wα) = api + 1− a for i ≥ 1,

γi

(
W̃H

α

)
=

2i
(√

ap2 + 1− a
)(√

ap3+1−a
ap+1−a

)
· · ·(√

ap+ 1− a+
√

ap2+1−a
ap+1−a

)2 (√
ap2+1−a
ap+1−a +

√
ap3+1−a
ap2+1−a

)2
· · ·

×

(√
(ap(i+1)+1−a)
ap(i−1)+1−a

)
(√

api+1−a
ap(i−1)+1−a

+
√

ap(i+1)+1−a
api+1−a

)2 .

(2.9)

and
(2.10)

γi

(
W̃Q

α

)
=

(
ap+1−a+ap2+1−a

ap+1−a

)(
ap2+1−a
ap+1−a

+ap3+1−a

ap2+1−a

)
···
(

api+1−a

ap(i−1)+1−a
+ap(i+1)+1−a

api+1−a

)
2i

.
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Case 1: If p = 0 or a = 0, 1, then it is clear.
Case 2: For 0 < p < 1, we note that

H(3; 1)
(
W̃#

α

)
≥ 0

⇐⇒


γ1

(
W̃#

α

)
γ2

(
W̃#

α

)
γ3

(
W̃#

α

)
γ4

(
W̃#

α

)
γ2

(
W̃#

α

)
γ3

(
W̃#

α

)
γ4

(
W̃#

α

)
γ5

(
W̃#

α

)
γ3

(
W̃#

α

)
γ4

(
W̃#

α

)
γ5

(
W̃#

α

)
γ6

(
W̃#

α

)
γ4

(
W̃#

α

)
γ5

(
W̃#

α

)
γ6

(
W̃#

α

)
γ7

(
W̃#

α

)


:=

 D
(
W̃#

α

)
E
(
W̃#

α

)(
E
(
W̃#

α

))∗
F
(
W̃#

α

)  =: P
(
H(3; 1)

(
W̃#

α

))
≥ 0,

where

D
(
W̃#

α

)
:=

 γ1

(
W̃#

α

)
γ2

(
W̃#

α

)
γ2

(
W̃#

α

)
γ3

(
W̃#

α

)  ,

E
(
W̃#

α

)
:=

 γ3

(
W̃#

α

)
γ4

(
W̃#

α

)
γ4

(
W̃#

α

)
γ5

(
W̃#

α

)  ,

F
(
W̃H

α

)
:=

 γ5

(
W̃#

α

)
γ6

(
W̃#

α

)
γ6

(
W̃#

α

)
γ7

(
W̃#

α

)  and W̃#
α := W̃H

α or W̃Q
α .

We now apply Lemma 2.2 to P
(
H(3; 1)

(
W̃#

α

))
. A direct calcula-

tion shows that F
(
W̃#

α

)
is invertible on {(a, p) : (a, p) ∈ (0, 1)× (0, 1)}.

Hence, we have

P
(
H(3; 1)

(
W̃#

α

))
≥ 0

⇐⇒ D
(
W̃#

α

)
−
(
W
(
W̃#

α

))∗
F
(
W̃#

α

)
W
(
W̃#

α

)
≥ 0,

where W
(
W̃#

α

)
:= F

(
W̃#

α

)−1 (
E
(
W̃#

α

))∗
.

A direct calculation shows that

D
(
W̃#

α

)
−
(
W
(
W̃#

α

))∗
F
(
W̃#

α

)
W
(
W̃#

α

)
≥ 0

⇐⇒ Q
(
W̃#

α

)
:=

 q11

(
W̃#

α

)
q12

(
W̃#

α

)
q21

(
W̃#

α

)
q22

(
W̃#

α

)  ≥ 0.
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Note that

Q
(
W̃#

α

)
≥ 0 if and only if q11

(
W̃#

α

)
≥ 0, q11

(
W̃#

α

)
≥ 0 and detQ

(
W̃#

α

)
≥ 0.

Using the software tool Mathematica [19], we can observe that

detQ
(
W̃#

α

)
< 0 when (a, p) ∈ (0, 1)× (0, 1) .

Thus W̃#
α is not 3-hyponormal, that is, W̃#

α is not subnormal when

(a, p) ∈ (0, 1)×(0, 1). Therefore, W̃#
α is not subnormal when 0 < p < 1,

which is contradict to the assumption. Therefore, by Case 1 and Case

2 , the mean transform W̃#
α is subnormal only if p = 0.

If we summarize these results just given above, we have:

Theorem 2.12. Let Wα be a contractive subnormal weighted shift
with Berger measure µ = aδp + (1− a) δ1 (0 ≤ p < 1). Then we have
that

(i) the harmonic transform W̃H
α of Wα is subnormal if and only if

p = 0 or a = 0, 1.

(ii) the quadratic transform W̃Q
α of Wα is subnormal if and only if

p = 0 or a = 0, 1.

Corollary 2.13. Let Wα ≡ shift(α0, α1, · · · ) be a subnormal with
Berger measure

µ = aδp + (1− a) δq (0 < a < 1, p < q) .

(i) the harmonic transform W̃H
α of Wα is subnormal if and only if

p = 0.

(ii) the quadratic transform W̃Q
α of Wα is subnormal if and only if

p = 0.

Proof. (⇐=) Suppose that p = 0. Then a direct calculation shows
that Wα is

shift
(√

(1− a) q,
√
q,
√
q, · · ·

)
,

so that we have

W̃H
α ≡ shift

(
2
√

(1− a) q

1 +
√

(1− a)
,
√
q,
√
q, · · ·

)
and

W̃Q
α ≡ shift

(√
(2− a) q

2
,
√
q,
√
q, · · ·

)
.
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Thus, W̃H
α and W̃H

α are subnormal with Berger measures

(2.11)

(
1−

(
2
√

(1−a)

1+
√

(1−a)

)2
)
δ0 +

(
2
√

(1−a)

1+
√

(1−a)

)2

δq and

(
1− (2−a)

2

)
δ0 +

(
(2−a)

2

)
δq, respectively.

(=⇒) We note that if Wα is a subnormal with aδq + (1− a) δq, then(
1√
q

)
Wα is a subnormal with Berger measure aδ p

q
+(1− a) δ1. Suppose

that W̃H
α

(
resp. W̃Q

α

)
is subnormal. Then

(
1√
q

)
W̃H

α

(
resp.

(
1√
q

)
W̃Q

α

)
is also subnormal. Note that

(
1√
q

)
W̃H

α

(
resp.

(
1√
q

)
W̃Q

α

)
is the har-

monic transform (resp. quadratic transform) of
(

1√
q

)
Wα. Thus, by

Theorem 2.12, we have p = 0, as desired.

Remark 2.14. By Example 2.7, Theorem 2.12 and Corollary 2.13,
it is nature to conjecture: Let Wα be a subnormal with finite atomic

Berger measure µ. Then the harmonic transform W̃H
α (resp. the

quadratic transform W̃Q
α ) of Wα is subnormal if and only if µ = aδ0 +

(1− a) δp (0 < a < 1).
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